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Abstract

Allergic asthma is a chronic inflammatory airway disease 
whose clinical course is punctuated by acute exacerbations 
from aeroallergen exposure or respiratory virus infections. 
Aeroallergens and respiratory viruses stimulate toll-like 
receptor (TLR) signaling, producing oxidative injury and 
inflammation. Repetitive exacerbations produce complex 
mucosal adaptations, cell-state changes, and structural 
remodeling. These structural changes produce substantial 
morbidity, decrease lung capacity, and impair quality of life. 
We will review recent systems-level studies that provide 
fundamental new insights into how repetitive activation 
of innate signaling pathways produce epigenetic ‘training’ 
to induce adaptive epithelial responses. Oxidative stress 
produced downstream of TLR signaling induces transient 
oxidation of guanine bases in the regulatory regions of 
inflammatory genes. The epigenetic mark 8-oxoG is bound 
by a pleiotropic DNA repair enzyme, 8-oxoguanine DNA 
glycosylase (OGG1), which induces conformational changes in 

adjacent DNA to recruit the NFkB·bromodomain-containing 
protein 4 (BRD4) complex. The NFkB·BRD4 complex not 
only plays a central role in inflammation, but also triggers 
mesenchymal transition and extracellular matrix remodeling. 
Small molecule inhibitors of OGG1-8-oxoG binding and BRD4–
acetylated histone interaction have been developed. We 
present studies demonstrating efficacy of these in reducing 
airway inflammation in preclinical models. Targeting inducible 
epigenetic reprogramming pathway shows promise for 
therapeutics in reversing airway remodeling in a variety of 
chronic airway diseases.
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Introduction
Allergic asthma (AA) is a chronic, relapsing disease that 
affects ~339 million people worldwide.1 Heterogeneous 
in nature, AA is typically characterized by Th2- and Th17-
polarized lymphocytic inflammation in the airway and variable 
degrees of bronchial hyperreactivity. The clinical course 
of AA is punctuated by intercurrent acute exacerbations 
(AEs). AEs are episodes of obstructive symptoms, including 
shortness of breath, wheezing, coughing, and mucous 
production. Mechanistically, these clinical deteriorations are 
due to inflammation-induced small airway constriction and 
edema, decreasing expiratory airflow and producing mucous 
plugging, resulting in ball-valve small airway obstruction.2 
Epidemiological studies show that AEs are provoked by 

environmental interactions, including aeroallergen exposure, 
viral upper respiratory tract infections, or environmental 
oxidants.3

AEs produce substantial clinical impact. AEs are responsible 
for unscheduled visits that produce significant healthcare 
costs. In the United States alone, AEs account for 15 million 
outpatient visits, 2 million emergency room (ER) visits, 
and 500,000 hospitalizations annually.4 Moreover, AEs 
diminish the quality of life in patients and their families.5 
In addition to acute worsening of disease, prospective 
observational studies indicate that AAs with frequent AEs 
are a distinct phenotype, frequently in association with 
glucocorticoid resistance.6 Notably, this phenotype is prone 
to structural remodeling, producing a functional decline in 
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lung function.7 Mechanistically, AEs are the result of toll-like 
receptor (TLR)-induced inflammation, producing remodeling 
through complex mucosal adaptions through epigenetic 
reprogramming. In this review, we will give an overview of 
the presence of mucosal environmental-inducible epigenetic 
changes and mechanistic pathways controlling them that 
influence airway remodeling and inform potential therapeutic 
strategies. This is a literature review using PubMed searches 
for allergic asthma, airway remodeling, epigenetics, and innate 
inflammation.

AEs and airway remodeling
AA is a highly heterogeneous disease in its etiology, triggers, 
and clinical course. In particular, a subset of ‘exacerbation-
prone’ AAs can be identified that exhibit differences in 
the course of their disease. Most strikingly, AAs with a 
history of recent severe exacerbation requiring an ER visit 
or hospitalization in the past 3 months are at significantly 
increased risk of having recurrent, future exacerbations. 
This relationship was confirmed in a 3-year multicenter 
observational study of difficult-to-treat asthmatics – The 
Epidemiology and Natural History of Asthma: Outcomes and 
Treatment Regimens (TENOR) Study7 – and a prospective study 
involving mild–moderate asthmatics presenting to the ER.8

Emerging data indicate that the exacerbation-prone 
phenotype is more likely to have substantial reduction in 
pulmonary function. For example, in the abovementioned 
TENOR study, the frequency of exacerbations was linked to 
reductions in pulmonary function. In the US Severe Asthma 
Research Program (SARP) study, exacerbation-prone subjects 
had a greater frequency of irreversible airflow limitation;9 this 
association of exacerbations and reduced airflow has been 
reproduced in the European Network for Understanding 
Mechanisms of Severe Asthma (ENFUMOSA) cohort.10 Similarly, 
lower respiratory tract infections in early life are associated 
with reduced lung function and increased airway reactivity 
(wheezing) that persists for as much as a decade after the 
infection.11–14 A 20-year follow-up study of respiratory syncytial 
virus-induced lower respiratory tract infection (LRTI) in infancy 
found that LRTI was an independent risk factor for decreased 
lung mechanics.15 These essential findings have been replicated 
in an independent 18-year follow-up study in a Swedish 
cohort16,17 as well as the Dutch Avon Longitudinal Study of 
Parents and Children (ALSPAC) study.11 Moreover, the Tucson 
Children’s Respiratory Study identified reduced pulmonary 
function in children at school age who had respiratory syncytial 
virus (RSV) bronchiolitis before the age of 3 years.18 This finding 
is significant because long-term follow-up studies of reduced 
lung function in childhood are predictive of adult chronic 
obstructive pulmonary disease (COPD) and asthma–COPD 
overlap syndrome.19 Even repetitive methacholine-induced 
bronchoconstriction produces enhanced extracellular matrix 
deposition and remodeling.20 Collectively, these data indicate 
AEs of any type trigger airway remodeling.

Reductions in pulmonary function are the consequence 
of airway remodeling. This term refers to a constellation 
of structural changes of the cellular components and their 
supporting extracellular matrix in the pulmonary tree.21,22 
These changes include collagen deposition in the subepithelial 
basement membrane, disruption of the epithelial barrier, 
epithelial cell-state change (mucous metaplasia and/or 
mesenchymal transition), and smooth muscle hypertrophy.21 
Collectively, airway remodeling narrows the small airways, 
producing obstruction and reducing lung compliance, and is 
associated with hyperreactivity to nonspecific stimuli.23

Epithelial innate inflammation
Epithelial cells represent the initial surface that responds to 
viruses and aeroallergens in the process of provoking an  
AE.24 Not solely a passive barrier, the epithelial cell  
dynamically responds to environmental exposures, through 
signal transduction pathways affecting the expression of 
homeostatic gene- and protein expression programs.  
These dynamic responses are determined by the type of 
exposure and location of the cell in the respiratory tree. Of 
particular focus here, environmental signals trigger innate 
signaling pathways through families of TLRs. TLRs play a central 
role in AEs of lung disease by producing mucin, stimulating 
leukocytic infiltration, and mesenchymal transition that drives 
fibrosis and remodeling.25,26 In addition, the epithelial innate 
response shapes the evolution of downstream  
Th2- and Th17-type adaptive immunity characteristic of asthma. 
In AA, aeroallergens induce a robust small airway epithelial 
transforming growth factor-beta 1 (TGFb1) response, important 
in activation of interleukin 13 (IL-13)-producing innate lymphoid 
type 2 (ILC2) cells and initiating an allergic response.27

Epithelial gene expression programs – and consequently 
secreted chemokines – produced by innate signaling in the 
upper airway are overlapping, but they are functionally distinct 
from programs produced by the lower airway epithelium in 
response to the same stimuli. These cell-type distinctions have 
been observed in gene expression28,29 and protein expression30 
studies. In particular, unbiased proteomics studies showed that, 
compared to proximal (tracheal) epithelial cells, bronchiolar-
derived epithelial cells produce over 106 distinct proteins in 
response to viral infections.30 These factors include a subset 
of NF-κB-dependent Th2-polarizing chemokines, including 
chemokine (C-C motif) ligand 20 (CCL20)/macrophage-
inducible protein 3α, thymic stromal lymphopoietin (TSLP), 
IL6, and CCL3-like 1 that are functionally and immunologically 
relevant to the pathogenesis of AA.30 To provide greater insight 
into the functional role of the small airway epithelial cell in 
viral-induced inflammation, we examined the response of a 
conditional knockout of the nuclear factor kappa B (NFkB)/
RelA transcription factor subunit in small airway bronchiolar 
cells. Interestingly, these animals are protected from TLR3-
induced leukocytic inflammation31 and RSV-induced airway 
obstruction.32 These findings indicate that a special type of 
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bronchiolar epithelial cells derived from the secretoglobun 
expressing-small airway bronchiolar cell progenitor cells 
are a major sentinel cell responsible for Th2 polarizing and 
mucogenic cytokine production.

We and others have found that NFkB is activated in upper 
(nasal and tracheal) airway cells in response to TLR3 stimulation 
and intracellular viral replication,33–35 yet these cells produce 
less CCL20/TSLP/IL6 than lower airway cells. The explanation for 
the intriguing discrepancy how NFkB activation in bronchiolar 
epithelial cells produces a distinct expression pattern from 
that in upper airway cells lies in differences in the chromatin 
organization of these cells. Small airway epithelial cells 
are preprogrammed/primed to elaborate unique cytokine 
expression patterns.

Epigenetic control of gene 
expression programs through 
‘innate training’
Epigenetics is a term that refers to heritable changes in gene 
expression that are controlled independently of primary 
DNA sequence. These changes are stable and inheritable, 
influencing environmental susceptibility to airway disease.36 
The mechanisms for epigenetic control can be at several levels, 
including direct DNA modification (methylation and oxidation), 
histone post-translational modifications, and changes in micro-
RNA (miRNA) expression. Epigenetic changes play important 
roles in cellular differentiation, cell fate decisions, and cell 
state transitions that underlie Th2 polarization, dendritic 
cell (DC) activation, and epithelial cellular adaptation.37,38 
Although epigenetic regulation can be stable, recent work 
has shown that histone modifications, chromatin accessibility, 
and miRNA can be dynamically changed in response to 
innate signaling. This process has been best described in 
monocyte biology and referred to as ‘training innate immunity’ 
resulting in immunological memory.39 However, epigenetic 
reprogramming also occurs in the epithelium, affecting 
extracellular matrix remodeling and inducible type III interferon 
(IFN) response.40 In this review, we will focus on the innate 
training in epithelial cells relevant to coupling AEs with airway 
remodeling.

Innate-inducible DNA oxidative 
modifications function as an 
epigenetic regulator
Liganded TLRs induce reactive oxidative stress (ROS), a second 
messenger that stimulates the release of growth factors and 
cytokines linked to airway remodeling. In concert with the 
second messenger function, inducible ROS produce oxidative 
DNA damage, an event that alters gene expression programs 
in addition to its role as a potential mutagen.41 Among the 
DNA bases, guanine is the most highly sensitive base to ROS 

because of its low oxidation potential. Oxidation of guanine 
results in the formation of 7,8 dihydro-8-oxoguanine (8-oxoG) 
at guanine-rich promoter regions.42 8-oxoG has emerged as 
dynamic and reversible epigenetic signal in oxidative innate 
immune responses because this modification is selectively 
recognized by 8-oxoguanine DNA glycosylate (OGG1). OGG1 
is a pleiotropic protein important in DNA damage repair 
and innate signaling. Of relevance here, OGG1 binding 
facilitates the recruitment of active transcription factor, 
NFkB, to promoters of a subset of highly inflammation-
inducible genes (Figure 1). These genes control expression of 
neutrophilic chemokines, including chemokine (C-X-C motif) 
ligand 2 (CXCL2), a cytokine important in the rapid leukocytic 
inflammation in response to TNF43 and pollen allergens.44

OGG1-induced recruitment of NFkB to regulatory chromatin 
is associated with rapid and highly inducible gene expression. 
Mechanistically, activated NFkB is bound to the transcriptional 
elongation complex (PTEFb), a complex composed of cyclin-
dependent kinase (CDK)9 and bromodomain-containing protein 4 
(BRD4).45 BRD4 facilitates phosphorylation of RNA polymerase II,46 
regulating its enzymatic processivity and RNA splicing functions, 
resulting in the rapid expression of inflammatory genes.47,48 In 
addition, we recently found that the association of RelA also 
induced the atypical histone acetyl transferase (HAT) activity of 
BRD4, acetylating histone H3 on Lys (K) 122, a modification that 
destabilizes nucleosomes, enhancing transcription through gene 
bodies.49,50 Consequently, the coactivator enzymatic properties 
of BRD4 mediates cytokine production, neutrophilia, leukocytic 
infiltration, and clinical manifestations of disease.26,32,51–53 In this 
manner, OGG1 nucleates chromatin remodeling complexes to 
innate genes (Figure 1).

Innate-inducible epigenetic marks 
affect genomic organization
The core component of chromatin is the nucleosome, a unit 
consisting of 142 bases of DNA wrapped around a histone 
octamer. The octamer is composed of two sets of histone 
H2A, H2B and H3 and H4 molecules with the internucleosome 
DNA stability H1 monomer. The nucleosomes protect DNA 
from damage and occlude transcription factors from binding; 
consequently, highly expressed genes are associated with 
nucleosome-free upstream control regions. There has been 
an explosion of the detailed biochemical understanding of 
histone modifications that affect nucleosomal structure and 
function.54 Genes whose regulatory elements are associated 
with acetylated histones (e.g., the H3K27 acetylation mark) are 
typically in a configuration accessible to transcription factors 
and can be constitutively or inducibly expressed. By contrast, 
genes with methylated histones, for example, H3K27(me)3, are 
in heterochromatin states and silenced.55

Increasingly, it has been recognized that genes involved in 
innate responses are associated with both activated and 
inactivated histone marks, so-called ‘metastable’ genes.40,56 
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Epigenetic mechanisms control 
cell-state transition
Chronic oxidative stress induced by innate signaling prompt 
adaptive cell-state transitions of the normal epithelium to a 
dedifferentiated mesenchymal-like state, called type II epithelial 
mesenchymal transition (EMT). Type II EMT involves extensive 
cytosolic restructuring, resulting in the loss of apical-basal 
polarity, dissolution of adherens junctions, enhanced motility, 
and expression of fibrotic genes (see Kalluri and Weinberg [2009] 
and Ijaz, Pazdrak, Kalita, and colleagues [2014] for in-depth 
reviews).59,60 As a consequence of this process, epithelial cells 
acquire stem-cell-like properties, permitting the transitioned 
mesenchymal cell to repopulate regions of denuded epithelium, 
promoting tissue repair and extracellular matrix remodeling.59

The EMT program involves coordinating epigenetic 
reprogramming of ~3000 genes mediated by a core group  
of mesenchymal transcription factors, including SNAI1  
and RelA.60–62 This program inhibits expression of 
differentiated epithelial cadherin (CDH1) and upregulates 
core EMT transcription factors, mesenchymal intermediate 
filaments, and extracellular matrix (ECM)-modifying genes 
(Figure 2). Transition to the mesenchymal state is the product  
of sequential cell-state changes beginning from the 

Nucleosomes binding metastable genes can be dynamically 
shifted between active and inactivate states in response to 
cellular stimuli resulting in the processes of derepression 
and activation, working in parallel, the process of derepression 
and activation results in highly dynamic increase in gene 
expression.

BRD4 is a dynamically responsive 
chromatin modifying and 
organizing factor
Through its acetyl lysine-binding bromodomains, BRD4 is 
essential for the maintenance of higher order chromatin 
configuration.57 In particular, BRD4 is enriched in enhancer 
regions (aka ‘superenhancers’) with other chromatin modifying 
factors controlling the expression of tissue-specific genes. 
These superenhancers result in high-level, constitutive gene 
expression and coordinate with expression of distant gene 
through looping interactions. These interchromosomal 
contacts are thought to maintain gene expression programs 
controlling cell-type identity.58 In response to inflammatory/
TLR signaling, BRD4 superenhancers are repositioned to 
inflammatory and fibrotic gene expression networks.

Figure 1. Epigenetic control of inducible mucosal inflammation. Schematic 
view of sequential steps in innate inflammation-induced leukocytic 
inflammation. Top left, resting cellular DNA is exposed to oxidative 
stress. Oxidation of guanine produces 7,8 oxoG-dihydro-8-oxoguanine 
(8-oxoG), an epigenetic signal that is recognized by 8-oxoGuanine DNA 
glycosylase (OGG1). Local conformational changes and protein–protein 
interaction results in high affinity binding of NFkB/RelA bromodomain-
containing protein 4 (BRD4) complex. RelA–BRD4 activates 
transcriptional elongation of immediate early genes. Chronic activation 
of this pathway produces cell-state changes (mesenchymal transition).
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differentiated epithelial state transitioning into uncommitted 
‘partial EMT (pEMT)’ state(s).63 Chromatin immunoprecipitation 
and histone-profiling studies have shown that initial responses 
in type II EMT are mediated predominately by coordinate 
reversible histone marks in the absence of changes in DNA 
methylation. Genome-wide ChIP-seq studies found a reduction 
in the heterochromatin mark H3 Lys9 dimethylation (H3K9Me2), 
an increase in the euchromatin mark H3 Lys4 trimethylation 
(H3K4Me3).64 Other histone profiling focusing on early changes 
in EMT have found accumulation of the repressive H3K27(me)3 
mark,65 a post-translational modification maintained by the 
PRC repressor complex, associated with type III IFN silencing.40

Activated NFkB·BRD4 drives EMT 
programs
Our recent unbiased RNA sequencing studies discovered that 
NFkB is upstream of the ‘core’ mesenchymal transcription 
factors SNAI1, zinc finger homeodomain enhancer-binding 
protein (ZEB), and V-Jun avian sarcoma virus 17 oncogene 
homolog (JUN) qualifying its consideration as a ‘master 
transcriptional regulator’ of EMT. Master regulators of the 
EMT are a subset of transcription factors engaged in the 
coordinate regulation of ‘cliques’ of downstream transcription 
factors by maintaining their expression by the formation of 
superenhancers.58,62 Systems-level studies have shown the 

essential role of BRD4 in mediating the coordinated gene 
expression changes underlying EMT.62 NFkB activation 
repositions BRD4-enriched superenhancers to inflammation-
related genes in a cell type-dependent manner.58 In the case 
of type II EMT in airway remodeling, we have shown that NFkB 
repositions BRD4 to the promoters of mesenchymal regulatory 
factors, including SNAI, ZEB, and basic helix-loop-helix 
transcription factor (Twist),66 activating their expression by the 
transcriptional elongation.

Targeting therapeutics to the 
OGG1-8-oxoG and NFkB·BRD4 
complexes in airway inflammation/
remodeling
Collectively, the studies mentioned earlier provide a rich 
mechanistic understanding of the mucosal response to 
innate inflammation. ROS generated by TLR signaling induce 
site-specific 8-oxoG formation in regions of open chromatin. 
Binding of OGG1 to its substrate gene regulatory regions 
and consequential alterations in adjacent DNA sequences 
facilitates the recruitment of NFkB·BRD4 complex resulting 
in the rapid expression of innate inflammatory genes. Over 
time, repetitive NFkB activation of innate inflammation either 
by aeroallergens,67 oxidized DNA base products,68 or viral 
infections69 induces innate training as a result of epigenetic 

Figure 2. Epigenetic changes underlying cellular remodeling in the airway. 
Schematic view of an airway epithelial cell in the normal and 
allergic state. At left, normal airway epithelium is connected by 
tight junctions. In these cells, epithelial cadherin (ECDH1) is in an 
open 30-nm chromatin fiber formation and actively expressed. By 
contrast, mesenchymal/fibrotic program, Snail Family Transcriptional 
Repressor 1 (SNAI1), vimentin (VIM), and fibronectin (FN) genes are in 
inactiveheterochromatin states. In response to viral infection or allergen 
exposure, injury/repair mechanisms trigger epigenetic reprogramming, 
silencing ECDH1 and activating SNAI1, VM, and FN genes.
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reprogramming and elaboration of the epithelial mesenchymal 
transition (Figure 1).

These studies inform the development of small molecule 
inhibitors of OGG1 and BRD4 as first-in-class inhibitors of 
innate-induced epigenetic reprogramming important in airway 
remodeling. High throughput screening of inhibitors of OGG1 
binding to genomic 8-oxoG resulted in the identification of 
TH5487, a cell-permeable active-site binding inhibitor.70 TH5487 
prevents OGG1 chromatin binding at nontoxic concentrations 
suppressing inflammatory gene expression and TNF-induced lung 
inflammation in vivo. These data demonstrated that epigenetic 
inhibitors targeting oxidative DNA repair can reduce airway 
inflammation. The effect of the small molecule OGG1 inhibitors 
recapitulates the earlier discovery that genetic deficiency of OGG1 
is associated with resistance to inflammation.71

BRD4 inhibitor development
Advancement of small molecule inhibitors directed to BRD4 
has been the subject of intense medicinal chemistry work.72,73 
These approaches initially focused on fragment-based ligand 

design based on the structurally conserved bromodomain 
(BD) important in low-affinity acetylated-histone recognition, 
important in chromatin interaction. Consequently, a series of 
nonselective BD small molecule inhibitors were developed with 
interesting properties in antiproliferation, anti-inflammation, 
and antifibrotic activity.31,51 Because of the structural similarity 
of the BDs across the entire BET family, the majority of these 
first generation inhibitors were not BRD4-selective.

Our laboratory’s recent development and validation of a highly 
specific BRD4 inhibitor with nanomolar binding affinity and  
30-fold specificity over the closely related BRD2 isoform has  
advanced the field by providing a useful probe for the  
testing of the role of BRD4 in pathophysiological conditions  
in vivo.31,53 These BRD4 inhibitors disrupt BRD4 activity at 
multiple levels, including disruption of the extensive  
BRD4 protein–protein interaction complex,31,74 dissolution 
BRD4-rich superenhancers,58 and inhibition of its atypical HAT 
activity.26,32,67 Consequently, BRD4 inhibitors show potential to 
interfere with mucosal inflammation and airway remodeling in 
response to viruses and allergen challenges. Reduction in airway 
remodeling has been through reversal of the mesenchymal 

Table 1. Active clinical trials of BRD4 inhibitors registered on clinical trials.gov (CT.gov).

Inhibitor Sponsor Indication CT.gov 
identifier

Apabetalone Steeve Provencher Pulmonary artery hypertension NCT03655704  

SF1126 SignalRX Pharmaceuticals, Inc. Advanced hepatocellular cancer NCT03059147   

AZD9150 AstraZeneca Relapsed/refractor non-Hodgkin’s lymphoma 
(PRISM)

NCT03527147

AZD5153 AstraZeneca Refractory solid tumors NCT03205176  

AZD5153 AstraZeneca Lymphoma NCT03205176

PLX51107 MDACC/National Cancer Institute AML/myelodysplastic syndrome NCT04022785   

Olaparib National Cancer Institute Metastatic CA with DNA repair defects NCT03375307  

BSM-986158 Dana Farber Cancer Institute Bromodomain and extraterminal domain (BET) 
inhibitor BMS-986158 in pediatric cancer

NCT03936465  

CPI-0610 Constellation Pharmaceuticals Peripheral nerve tumors NCT02986919

CPI-0610 Constellation Pharmaceuticals Lymphoma NCT01949883

GSK2820151 GlaxoSmithKline Metastatic and unresectable solid tumors NCT02630251

GSK525762 GlaxoSmithKline Pharmacokinetics, pharmacodynamics, and 
clinical activity in NUT midline carcinoma and 
other cancers

NCT01587703.
NCT01587703.
NCT01943851

INCB057643 Incyte Corporation Advanced-stage cancer NCT02711137

ODM-207 Orion Solid tumors NCT03035591

CC-90010 Celgene Lymphoma, solid tumors NCT03220347

FT-1101 Forma Therapeutics AML, myelodysplastic syndrome NCT02543879

ABBV-744 AbbVie Prostate cancer NCT03360006

RVX-000222 Resverlogix Corporation T2DM, CAD NCT02586155

RVX-000222 Resverlogix Corporation Chronic kidney failure NCT03160430

AML, acute myeloid leukemia; CAD, coronary artery disease; DNA, deoxyribonucleic acid; NUT, nuclear carcinoma of the testis; 
T2DM, type 2 diabetes mellitus.
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transition and reduction in the unfolded protein response.75 
A recent demonstration of BRD4 inhibitors in TLR3-induced 
remodeling has been demonstrated by unbiased optical 
clearing secondary harmonic generation in a mouse model.76

These first-generation inhibitors have been advanced to 
identify small molecule inhibitors for selective BDs as well as 
chemistries that degrade the target molecule using proteolysis 
targeting chimera (PROTAC), promoting ubiquitin-mediated 
proteolysis of the target molecule (reviewed in Cochran, 
Conery, and Sims [2019]).77 BRD4 inhibitors being tested in 
CT.gov-registered clinical trials in humans are shown in Table 1. 
The majority of indications are related to the treatment of solid 
and hematological malignancies.

Advancing BRD4 inhibitors into the clinic for treatment of 
airway remodeling will require the advancement of biomarkers 
of BRD4 effect. Biomarkers of BRD4 inhibition in airway 
disease have been identified recently using systems-level 
pharmacoproteomics approaches.78 This latter study discovered 

that BRD4 inhibitors interfered with vascular permeability 
and pericyte-myofibroblast transition,78 indicating that BRD4 
inhibitors ameloriate multiple downstream homeostatic 
components of the coordinate mucosal injury-repair response.

Summary
Inducible mucosal epigenetic responses to mucosal injury 
underlie a coordinate inflammatory and remodeling response. 
In this review, we present evidence for guanine residue 
oxidation as an inflammation-inducible epigenetic mark. This 
epigenetic change is dynamic and highly reversible. 8-oxoG is 
recognized by OGG1, recruiting the NFkB transcription factor–
BRD4 complex. The evidence that BRD4 is a central nexus in 
inflammation-mediated remodeling is compelling. Efforts to 
disrupt the 8-oxoG-OGG1- NFkB·BRD4 epigenetic cascade has 
been successful with the development of two classes of OGG1 
and BRD4 inhibitors. These compounds will find numerous 
clinical applications in treatment of acute inflammation and 
chronic remodeling.
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