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Abstract
Several prospective epidemiological studies have shown 
that there is a clear inverse relationship between serum high-
density lipoprotein-cholesterol (HDL-C) concentrations and 
risk for coronary heart disease (CHD), even at low-density 
lipoprotein-cholesterol (LDL-C) levels below 70 mg/dL. 
However, more recent evidence from genetic studies and 
clinical research has come to challenge the long-standing 
notion that higher HDL-C levels are always beneficial, while 
lower HDL-C levels are always detrimental. Thus, it becomes 
apparent that HDL functionality plays a much more important 
role in atheroprotection than circulating HDL-C levels. HDL 
cholesterol efflux capacity (CEC) from macrophages is a key 
metric of HDL functionality and exhibits a strong inverse 
association with both carotid intima-media thickness and 
the likelihood of angiographic coronary artery disease (CAD), 
independent of the HDL-C level. Thus, extensive research is 
being conducted to identify new agents with a favorable side 
effect profile, which would be able to enhance CEC, improve 
HDL functionality and potentially decrease cardiovascular risk. 

This review aims to present and discuss the current clinical 
and scientific evidence pertaining to the significance of HDL 
functionality over the actual HDL-C concentration in mediating 
the favorable effects on the cardiovascular system. Thus, we 
conducted a PubMed search until December 2017 through 
the English literature using the search terms ‘HDL function/
functionality’, ‘HDL properties’, ‘cardiovascular risk’ and 
‘cholesterol efflux capacity’. We also included references from 
the articles identified and publications available in the authors’ 
libraries.
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Introduction
Cardiovascular disease (CVD) is the leading cause of death 
worldwide, being responsible for approximately 30% of the 
annual global mortality [1]. In the United States the disease 
is highly prevalent and over one-third of the population has 
CVD [2]. Several prospective epidemiological studies have 
shown that there is a clear inverse relationship between serum 
high-density lipoprotein-cholesterol (HDL-C) concentrations 
and risk for coronary heart disease (CHD), even at low-density 
lipoprotein-cholesterol (LDL-C) levels below 70 mg/dL [3,4]. 
Furthermore, it has been estimated that for each increment of 
1 mg/dL in HDL-C, the CHD risk is reduced by 3% in women and 
by 2% in men [5].

However, more recent evidence from genetic studies and 
clinical research has come to challenge the long-standing 
notion that higher HDL-C levels are invariably beneficial, while 
lower HDL-C levels are always detrimental [6].

In a genetic study, three functional variants of hepatic lipase 
associated with a modest rise in levels of HDL-C did not 
improve cardiovascular risk [7]. On the other hand, functional 
mutations in ATP-binding cassette transporter A1 (ABCA1) 
leading to a 29.3% reduction in HDL-C levels, did not adversely 
affect cardiovascular risk [8]. Furthermore, it was shown that 
carriers of a single nucleotide polymorphism in the endothelial 
lipase gene leading to an increase of HDL-C levels by 5.4 mg/dL, 
but with similar levels of other lipid and nonlipid cardiovascular 
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risk factors, did not enjoy a reduced risk of myocardial 
infarction, as compared with noncarriers [9]. In a review, which 
discussed the latest insights for HDL-C-associated genes, as well 
as evidence from large-scale genome-wide association studies, 
it was concluded that the current data do not support a direct 
causal relation between molecularly defined HDL disorders 
and atherosclerosis per se [6,10]. In a large clinical study, higher 
preoperative HDL-C levels were not associated with reduced 
risk of vascular events in patients with coronary artery disease 
(CAD) undergoing coronary artery bypass grafting (CABG) 
[11]. More importantly, it has been shown that very high LDL-C 
levels and/or very large HDL particle size are associated with 
increased risk for CAD [12]. This observation, along with the 
detrimental, neutral or at most slightly positive effects on CVD 
risk conferred by the cholesteryl ester transfer protein (CETP) 
inhibitors, despite a large increase in HDL-C levels (from 31% 
and up to 133.2%) [13–16], significantly weaken the notion that 
high HDL-C levels are always protective [6].

This review aims to present and discuss the current clinical 
and scientific evidence pertaining to the significance of 
HDL functionality over the actual HDL-C concentration for 
determining cardiovascular risk. Thus, we conducted a PubMed 
search until December 2017 through the English literature 
using the search terms ‘HDL function/functionality’, ‘HDL 
properties’, ‘cardiovascular risk’ and ‘cholesterol efflux capacity’. 
We also included references from the articles identified and 
publications available in the authors’ libraries.

Composition and biological 
functionality of HDL
HDL constitutes a heterogeneous group of particles differing 
in density, size, electrophoretic mobility, and apolipoprotein 
content [17]. The major HDL apolipoproteins are ApoA-I and 
ApoA-II, and both are required for normal HDL biosynthesis. 
ApoA-I is synthesized in both the intestine and the liver, 
constitutes approximately 70% of HDL protein, and is  
present on virtually all HDL particles. ApoA-II is synthesized 
only in the liver, constitutes approximately 20% of HDL  
protein, and is present on about two-thirds of HDL particles  
in humans [18].

Mass spectrometry studies have revealed that the HDL particles 
carry a multiplicity of proteins, which not only affect lipid 
metabolism but are also involved in complement regulation, 
acute-phase response and proteinase inhibition [19]. Lipidomic 
approaches have identified more than 200 molecular lipid 
species in normolipidemic HDL, including phospholipids, 
sphingolipids, steroids, cholesteryl esters, triglycerides, 
diacylglycerides, monoacylglycerides and free fatty acids [20]. 
Furthermore, it has to be emphasized that HDL consists of a 
group of particles with marked structural, physiochemical, 
compositional and functional heterogeneity and with 
significant differences in their biological activities [6,20,21]. 
Thus, it becomes evident that, given this vast heterogeneity of 

biological functions, HDL functionality cannot be inferred from 
the plain measurement of plasma HDL-C levels [22].

HDL plays a major role in reverse cholesterol transport 
(RCT), by which excess cholesterol is removed from the 
peripheral vessels and is transported back to the liver for 
disposal [23]. However, HDL has several other beneficial 
biological properties, which enhance its protective 
effect against CVD. These include antioxidative, anti-
inflammatory endothelial/vasodilatory, antithrombotic and 
cytoprotective functions [24–27]. More specifically, HDL 
may provide potent protection of LDL in vivo from oxidative 
damage, induced by free radicals in the arterial intima, with 
consequent inhibition of the generation of proinflammatory 
oxidized lipids, mainly lipid hydroperoxides but also short-
chain oxidized phospholipids [24]. HDL also inhibits the 
expression of adhesion molecules in endothelial cells and 
thus it decreases the recruitment of blood monocytes into 
the arterial wall [25]. HDL also increases the production of 
the atheroprotective signaling molecule nitric oxide (NO) via 
upregulation of the expression of endothelial NO synthase 
(eNOS), as well as by maintaining the lipid environment 
in caveolae, where eNOS is co-localized with partner 
signaling molecules. In addition, HDL stimulates eNOS as a 
result of kinase cascade activation by the high-affinity HDL 
receptor, scavenger receptor class B type I (SR-BI) [26]. The 
antithrombotic function of HDL may be exerted through the 
activation of prostacyclin synthesis, as well as through the 
attenuation of the expression of tissue factor and selectins, 
with consequent downregulation of thrombin generation 
via the protein C pathway and direct and indirect blunting of 
platelet activation [26]. The direct cytoprotective effect of HDL 
on endothelial cells may be exerted through prevention of 
the suicide pathway leading to apoptosis of endothelial cells 
by decreasing the cysteine protease P32 (CPP32)-like protease 
activity. Thus, HDL plays a protective role against ‘injury’, 
as this is described in the ‘response-to-injury’ hypothesis of 
atherogenesis [27].

The ApoA-I Milano mutation: low 
levels of a highly functional HDL 
offering protection from CVD
The ApoA-I Milano (AI-M) mutation was first described 
in 1980 in a family originating from Limone sul Garda, a 
small town outside Milan in northern Italy. In this genetic 
mutation, the ApoA-I variant shows a single amino acid 
substitution of arginine to cysteine at the position 173 in the 
primary sequence of ApoA-I. This substitution leads to the 
formation of homodimers (AI-M/AI-M) and heterodimers 
with apolipoprotein AII (AI-M/AII). The carriers of the ApoA-I 
Milano mutation share a lipid profile characterized by very low 
HDL-C levels and moderate hypertriglyceridemia but without 
evidence of premature CAD or preclinical coronary or carotid 
atherosclerosis [28,29].
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On the other hand, there is evidence showing that small-dense 
HDL particles may be more ‘functional’ in many protective 
mechanisms. More specifically, small-dense HDL particles 
promote more effectively cholesterol efflux from lipid-loaded 
macrophages and exhibit more potent antioxidative, anti-
inflammatory, cytoprotective, antithrombotic and anti-infectious 
activity, as compared with larger HDL particles [6,22,42].

The apparent discordancy concerning the atheroprotective 
potential of the different subfractions of the HDL particles 
may well be elucidated by more recent data showing 
that the presence of large HDL particles is linked to a 
lower number of circulating LDL particles, and primarily 
of the highly atherogenic small-dense LDL particles [43]. 
Therefore, it becomes apparent that the cardiovascular 
protection may not be related to the large size of HDL particles 
but may be actually due to the associated reduced number of 
LDL particles [6].

In a large multiethnic study of patients without baseline CHD, 
which was designed to evaluate the independent associations 
of HDL-C and HDL particle (HDL-P) concentrations with 
carotid intima-media thickness (CIMT) and incident CHD, it 
was clearly shown that, after adjusting for each other and LDL 
particle (LDL-P) concentration, the concentration of HDL-C 
was no longer associated with CIMT or CHD, whereas HDL-P 
remained independently associated with both CIMT and CHD 
[44]. These data again clearly support the concept that the 
anti-atherogenic potential of HDL may be related to the total 
HDL-P concentration but cannot be inferred from the plain 
measurement of plasma HDL-C.

Factors altering HDL functionality
As mentioned above, HDL plays a major role in RCT, but 
also exhibits antioxidative, anti-inflammatory endothelial/
vasodilatory, antithrombotic and cytoprotective functions. 
On the other hand, the major proteins of HDL are ApoA-I 
and ApoA-II but HDL particles also carry a multiplicity of less 
abundant proteins, which not only affect lipid metabolism 
but are also involved in complement regulation, acute-phase 
response and proteinase inhibition. These include ApoC-I, 
ApoC-II, apoC-III, apoE, apoJ, apoL, lecithin:cholesterol 
acyl-transferase (LCAT), serum paraoxonase-1 (PON1), and 
platelet-activating factor acetylhydrolase (PAF-AH) [45]. 
Modification of the protein components of HDL, brought 
about by the oxidative environment of the acute-phase 
response (a systemic response to infection, surgery, myocardial 
infarction, and chronic inflammation), can convert HDL from 
an anti-inflammatory to a proinflammatory particle [45,46]. 
Indeed, during acute-phase response, a new set of proteins, 
including serum amyloid A (SAA) and ceruloplasmin, bind 
to HDL and may render HDL pro-inflammatory and pro-
atherogenic by limiting its ability to promote RCT and to 
prevent LDL modification [45]. In a study using human aortic 
endothelial and smooth muscle cells, it was shown that while 

Weekly infusions of recombinant ApoA-I Milano, as compared 
with placebo, caused a significant regression of coronary 
atherosclerosis in patients with acute coronary syndrome (ACS) 
after 5 only treatments [30]. Furthermore, in an animal study, 
recombinant ApoA-1 Milano was shown to exert greater  
anti-inflammatory, antioxidant and plaque-stabilizing effects, 
as compared with wild-type HDL [31].

These cardiovascular protective effects of ApoA-I Milano 
provided the initial clinical support for the concept that the 
functionality of HDL plays a more important role to reduce 
atherosclerosis than the circulating level of HDL-C [32].

HDL particle subpopulations and 
HDL functionality
As it was alluded before, plasma HDL constitutes a 
heterogeneous group of particles with diverse structure 
and biological activity, mainly due to differences in their lipid 
and apolipoprotein content [6]. Earlier studies have indicated 
that the larger HDL particles are more protective [33–36]. 
However, more recent evidence has come to challenge  
this concept.

CETP inhibitors failed to provide any meaningful reduction in 
cardiovascular risk despite a substantial increase in circulating 
HDL-C levels [13–16]. Similarly, niacin (added to statin therapy) 
also failed to decrease cardiovascular risk despite a significant 
increase in HDL-C levels [37,38]. Both CETP inhibitors and niacin 
preferentially increase the levels of the large HDL particles, 
whereas their effects on the total number of HDL particles 
are weaker [39]. There is evidence from experimental studies 
that cholesterol-overloaded HDL particles may be functionally 
abnormal with impaired anti-atherogenic potential; they may 
have a negative impact on the efflux potential of cholesterol 
from extrahepatic cells and may reduce hepatic selective 
uptake of cholesterol mediated by scavenger receptor SR-BI 
[40,41]. This evidence is also supported by a post hoc analysis 
of two large prospective studies, the IDEAL (Incremental 
Decrease in End Points through Aggressive Lipid Lowering) trial 
and the EPIC (European Prospective Investigation into Cancer 
and Nutrition)-Norfolk case-control study, which showed that 
very high plasma HDL-C levels (≥70 mg/dL) and very large HDL 
particles (>9.53 nm) were associated with higher risk for CVD. In 
contrast, ApoA-I remained protective across the major part of 
its distribution in both studies, thus proving that high plasma 
ApoA-I more uniformly represents lower risk [12]. Furthermore, 
in another community-based cohort study, it was clearly shown 
that cholesterol-overloaded HDL particles were independently 
associated with progression of carotid atherosclerosis in a  
CVD-free population. More specifically, participants with the 
highest estimated number of cholesterol molecules per HDL 
particle (≥53.0) had 1.56-fold (95% confidence interval: 1.14 to 
2.13; p=0.006) increased progression, as compared with those 
with the lowest estimated number of cholesterol molecules per 
HDL particle (<41.0) [41].
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HDL obtained before cardiac surgery completely inhibited 
the LDL-induced increase in monocyte transmigration, in 
contrast, acute-phase HDL, obtained from the same patients 
2–3 days after surgery, not only did not inhibit the LDL-induced 
increase in monocyte transmigration but also amplified 
it by up to 1.8-fold (p<0.01). Thus, anti-inflammatory HDL 
actually became pro-inflammatory during the acute-phase 
response [47].

Furthermore, recent studies have shown that HDL and  
ApoA-I recovered from human atheroma are dysfunctional  
and are extensively oxidized by myeloperoxidase (MPO).  
More specifically, ApoA-I containing a 2-OH-Trp72 group 
(oxTrp72-apoA1) is in low abundance within the circulation  
but accounts for 20% of the apoA1 in atherosclerosis-laden 
arteries. Moreover, increased levels of oxTrp72-apoA1 in 
subjects presenting to a cardiology clinic were associated with 
increased risk for CVD. Thus, it was suggested that  
circulating levels of oxTrp72-apoA1 may serve as a marker of  
the pro-atherogenic process in the arterial wall [48]. In 
accordance with this study, there is evidence indicating that 
dysfunctional HDLs have impaired anti-inflammatory potential 
and their presence in patients with CAD may actually help 
discriminate between patients with ACS and patients with 
stable CAD [49].

In addition, it has been shown that glycation may also impair 
HDL function and this could be a contributing factor to the 
accelerated atherosclerosis observed in Type II diabetes 
mellitus [50]. Furthermore, there is evidence that in metabolic 
syndrome the small-dense HDL particles become dysfunctional 
displaying impaired antioxidative activity [51]. Moreover, 
protein carbamylation may also render HDL dysfunctional, 
which raises the possibility that HDL carbamylation contributes 
to foam cell formation in atherosclerotic lesions [52]. 
Additionally, MPO-mediated oxidation of ApoA-I has also been 
found to impair HDL function in regard to its RCT, antioxidant 
and anti-inflammatory activities [53].

Ethnicity has also been shown to be associated with HDL 
functionality. In this regard, there is evidence that black 
South African women, in comparison to white women, 
display improved HDL antioxidant functionality and are 
relatively protected against CHD despite greater prevalence 
of obesity and lower circulating HDL-C levels than white 
women [54]. There is also evidence that obesity may impair 
HDL functionality [54,55], whereas bariatric surgery may 
actually exert a significant improvement in HDL structure and 
functionality [56].

Dietary habits may also play a significant role in the 
functionality of HDL. Consumption of saturated fat has been 
shown to reduce the anti-inflammatory potential of HDL and 
impair arterial endothelial function. In contrast, consumption 
of polyunsaturated fat is associated with an improvement of 
the anti-inflammatory activity of HDL. These findings highlight 
novel mechanisms by which different dietary fatty acids may 
affect atherogenicity [57].

HDL cholesterol efflux capacity: a 
key metric of HDL functionality
Cholesterol efflux from macrophages to HDL occurs via several 
mechanisms involving the ABCA1 and ABCG1 transporters, as 
well as the scavenger receptor SR-BI [58]. Although cholesterol 
efflux from macrophages accounts only for a very small fraction 
of the total efflux of cholesterol from peripheral tissues via the 
RCT pathway, it appears to be the most relevant component 
in regard to atheroprotection and therefore it may provide 
an excellent surrogate for HDL functionality [6,59]. Actually, 
in a cross-sectional study, it was demonstrated that the 
cholesterol efflux capacity (CEC) from macrophages has a 
potent inverse association with both CIMT and the likelihood 
of angiographic CAD, independent of the HDL-C level [60]. The 
results of this study were confirmed in another recent study, 
which followed 2,924 adults free from cardiovascular disease 
who were participants in the Dallas Heart Study over a median 
follow-up period of 9.4 years. HDL-C level, HDL-P concentration 
and CEC were measured at baseline. There was a statistically 
significant 67% reduction in cardiovascular risk in the highest 
quartile of CEC compared with the lowest quartile. Adding CEC 
to traditional risk factors was associated with improvement in 
discrimination and reclassification indexes [61].

In addition, there is evidence that CEC is impaired in patients 
with chronic kidney disease, metabolic syndrome, diabetes 
mellitus and autoimmune disorders [62]. On the other hand, CEC 
is actually enhanced in patients with the metabolic syndrome 
and low HDL-C levels who were treated with pioglitazone, but 
not in patients with hypercholesterolemia who were treated 
with statins [60]. It has also been shown that male sex and 
current smoking are associated with decreased CEC [60].

Thus, quantification of CEC may be instrumental in the 
assessment of new therapies targeting HDL metabolism and RCT, 
as agents that enhance CEC may lead to improvement of HDL 
functionality and potentially reduction of cardiovascular risk.

Future therapeutic directions
As it was mentioned earlier in this review, infusions of 
recombinant ApoA-I Milano caused a significant regression of 
coronary atherosclerosis in patients with ACS [30]. However, 
subsequent clinical development was delayed by several years 
due to manufacturing difficulties and contamination from host-
derived proteins [32]. More recently, a clean manufacturing 
process was developed to produce the recombinant ApoA-I 
Milano without contamination by host-derived proteins and 
this new product was called MDCO-216 [32]. However, in a pilot 
trial, MDCO-216 did not produce a significant beneficial effect 
on CAD progression measured by Intravascular Ultrasound 
(IVUS) [63] and the sponsor company abandoned its further 
development.

It is known that plasma-selective delipidation converts αHDL 
to preβ-like HDL, the most effective form of HDL for lipid 
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removal from arterial plaques [64]. Autologous delipidated 
HDL plasma infusions in patients with ACS were proven to be 
clinically feasible and well tolerated. Furthermore, the IVUS 
data demonstrated a numeric trend toward regression in the 
total atheroma volume in the delipidated group compared 
with an increase of total atheroma volume in the control group, 
although the results did not reach statistical significance [64]. 
Further studies will be needed to determine the ability of this 
therapy to reduce clinical cardiovascular events.

In a randomized, double-blind, placebo-controlled,  
dose-ranging phase 2b trial, which was designed to assess 
the safety and tolerability of CSL112 (a reconstituted, infusible, 
plasma-derived ApoA-I) after acute myocardial infarction 
(AEGIS-I trial), it was shown that 4 weekly infusions of CSL112 
were feasible, well tolerated, and not associated with any 
significant impairment in liver or kidney function or other 
safety concerns. The ability of CSL112 to acutely enhance CEC 
was also confirmed [65]. A phase 3 trial to assess the potential 
benefit of CSL112 to reduce major adverse cardiovascular 
events has already been planned and will begin recruiting 
patients in early 2018.

Although infusions of recombinant ApoA-I Milano or ApoA-I 
wild type may be potentially safe and effective for clinical 
application, this therapy is limited for clinical use due to the 
high cost of large-scale production of ApoA-I and need for 
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repeated intravenous administration. Thus, gene therapy 
could represent an alternative approach for its possible long-
term effect. Although preclinical studies have provided some 
evidence of benefit using this approach, further studies are 
needed for its definitive clinical validation [32]. Recent progress 
in recombinant adeno-associated virus (AAV) technology 
appears promising in this regard [32,66].

Conclusions
From the above review of the scientific, epidemiological and 
clinical data, it becomes apparent that HDL functionality plays a 
much more important role in atheroprotection than circulating 
HDL-C levels. Plasma HDL constitutes a heterogeneous group of 
particles with diverse structure and biological activity, and very 
high HDL-C levels are not invariably protective but rather, under 
certain conditions, may actually become pro-inflammatory. 
HDL functionality is dependent upon genetic, environmental, 
and lifestyle factors and may be modified in several disease 
states. HDL CEC from macrophages is a key metric of HDL 
functionality and exhibits a strong inverse association 
with both CIMT and the likelihood of angiographic CAD, 
independent of the HDL-C level. Thus, extensive research is 
being conducted to identify new agents with a favorable side-
effect profile, which would be able to enhance CEC, improve 
HDL functionality and potentially decrease cardiovascular risk.
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